1,313 research outputs found

    Transaction-oriented simulation in ad hoc grids: design and experience

    Get PDF

    Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers

    Get PDF
    Energy recovering an electron beam after it has participated in a free-electron laser (FEL) interaction can be quite challenging because of the substantial FEL-induced energy spread and the energy anti-damping that occurs during deceleration. In the Jefferson Lab infrared FEL driver-accelerator, such an energy recovery scheme was implemented by properly matching the longitudinal phase space throughout the recirculation transport by employing the so-called energy compression scheme. In the present paper,after presenting a single-particle dynamics approach of the method used to energy-recover the electron beam, we report on experimental validation of the method obtained by measurements of the so-called "compression efficiency" and "momentum compaction" lattice transfer maps at different locations in the recirculation transport line. We also compare these measurements with numerical tracking simulations.Comment: 31 pages, 13 figures, submitted to Phys. Rev. Special Topics A&

    Measurements on Pulsed Superconducting Magnets

    Get PDF

    Driver Accelerator Design for the 10 kW Upgrade of the Jefferson Lab IR FEL

    Full text link
    An upgrade of the Jefferson Lab IR FEL is now under construction. It will provide 10 kW output light power in a wavelength range of 2-10 microns. The FEL will be driven by a modest-sized 80-210 MeV, 10 mA energy-recovering superconducting RF (SRF) linac. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. These are imposed by the need for both transverse and longitudinal phase space management, the potential impact of collective phenomena (space charge, wakefields, beam break-up (BBU), and coherent synchrotron radiation (CSR)), and interactions between the FEL and the accelerator RF system. This report addresses these issues and presents an accelerator design solution meeting the requirements imposed by physical phenomena and operational necessities.Comment: submission THC03 for LINAC200

    Kuehlung langer Rohrsysteme mit superfluidem Helium

    Get PDF

    High Average Brilliance Compact Inverse Compton Light Source

    Get PDF
    There exists an increasing demand for compact Inverse Compton Light Sources (ICLS) capable of producing substantial fluxes of narrow-band X-rays. While multiple design proposals have been made, compared to typical bremsstrahlung sources, most of these have comparable fluxes and improve on the brilliance within a 0.1% bandwidth by only a few orders of magnitude. By applying cw superconducting rf beam acceleration and rf focusing to produce a beam of small emittance and magnetic focusing to produce a small spot size on the order of a few microns at collision, the source presented here provides a 12 keV X-ray beam which outperforms other compact designs and bremsstrahlung sources. Compared to a bremsstrahlung source, the flux is improved by at least an order of magnitude and the average brilliance by six orders of magnitude. Surpassing other compact ICLS designs, the source presented here is attractive to a wide variety of potential users

    Scattered Spectra from Inverse Compton Sources Operating at High Laser Fields and High Electron Energies

    Get PDF
    As Compton x-ray and gamma-ray sources become more prevalent, to understand their performance in a precise way, it becomes important to be able to compute the distribution of scattered photons precisely. For example, codes have been developed at Old Dominion University which were used to understand the performance of the Dresden Compton Source in detail. An ideal model would (i) include the full Compton effect frequency relations between incident and scattered photons, (ii) allow the field strength to be large enough that nonlinear effects are captured, and (iii) allow the effects of electron beam emittance to be introduced and studied. Various authors have considered various pieces of this problem, but until now, no analytical or numerical procedure is known to us that captures these three effects simultaneously. Here we present a model for spectrum calculations which simultaneously cover these aspects. The model is compared to a published full quantum mechanical calculation and found to agree for a case where both full Compton effect and nonlinear field strength are present. We use this model to investigate chirping prescriptions to mitigate ponderomotive broadening
    • …
    corecore